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The crystal and magnetic structures of La0.33Ca0.67MnO3 were studied at high pressures up to 50 and 5 GPa,
respectively. The lattice contraction is highly anisotropic with the most compressible b axis. A rapid suppres-
sion of the “Wigner-crystal” antiferromagnetic �AFM� state and stabilization of the C-type AFM state under
high pressure were observed. Possible reasons for the instability of the Wigner-crystal AFM state under
pressure are discussed.
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I. INTRODUCTION

Perovskite manganites R1−xAxMnO3 �R, rare earth; A, al-
kali earth elements� are at the current focus of extensive
scientific research due to a rich variety of fascinating physi-
cal phenomena—colossal magnetoresistance, insulator-metal
transition, charge and orbital ordering, and mesoscopic phase
separation.1,2 A complicated balance of ferromagnetic �FM�
double exchange mediated by charge carriers of eg nature
and antiferromagnetic �AFM� superexchange interactions be-
tween localized magnetic moments of t2g nature coupled to
lattice distortion effects and orbital degrees of freedom leads
to an especially complex phase diagram of compounds with
x�0.5.

Manganites R1−xSrxMnO3 �R=La, Pr, and Nd� with a
larger average A-site ionic radius �rA� exhibit AFM states of
A type for x�0.5–0.6 and C type for x�0.6–0.85 concen-
tration range.3–5 In the A-type AFM state, Mn magnetic mo-
ments form FM planes with AFM coupling between them,
while in the C-type AFM state, they form linear FM chains
with AFM interchain coupling.3–5 In compounds
R1−xCaxMnO3 �R=La, Pr, and Nd� with a smaller �rA�,
charge localization effects become more pronounced and, for
x values corresponding to ideal ratios of Mn3+ and Mn4+

ions—1:1, 2:3, etc., a number of more complicated AFM
ground states occur, e.g., CE-type AFM �x=0.5� and
“Wigner-crystal” �WC, x=0.67� AFM ones.6–13 The charac-
teristic feature of these states is the presence of two structur-
ally and magnetically inequivalent sublattices, corresponding
either to different propagation vectors kC= �1 /2 0 1 /2� and
kE= �0 0 1 /2� for the CE-type AFM state or the same propa-
gation vector kWC= �1 /3 0 1 /2� for the WC AFM state. One
of these sublattices exhibits a cooperative Jahn–Teller distor-
tion of MnO6 octahedra associated with the d�3x2

−r2� /d�3z2−r2� eg orbital order, while another one has a
more regular MnO6 octahedra.6–13 In both the CE-type and
WC AFM states, Mn magnetic moments form quasi-one-
dimensional zigzag FM chains with AFM interchain cou-
pling with a somewhat different chain topology.8,10,14 Tradi-
tionally, the formation and properties of CE-type and WC
AFM states have been interpreted in terms of the long range
Mn3+ /Mn4+ charge ordering concept,6–13 although some re-
cent results imply that the real valence modulation between

inequivalent Mn sites is much smaller than �3.5�0.5�e.15–19

The temperature TCO corresponding to the onset of the
lattice distortions associated with charge ordering rapidly
grows from 155 to 260 K with increasing Ca content �and
Mn4+ ion concentration� in the x=0.5–0.67 range for the
La1−xCaxMnO3 system and it starts to decrease for larger x
values, while the Néel temperature weakly decreases, TN
�155–140 K.8–11 The WC AFM state of La1−xCaxMnO3
with x�2 /3 remains stable in high magnetic fields H of up
to 14 T, while the CE-type AFM state for x�1 /2 is gradu-
ally suppressed at H�6 T.20

A study of high pressure effects on the La1−xCaxMnO3
system can provide an important insight into the formation of
ground states of manganites with an enhanced charge local-
ization and their stability with respect to a variation of inter-
atomic distances and angles, controlling the balance of com-
peting interactions. Recently, it was found that the CE-type
AFM state remains stable in La0.5Ca0.5MnO3 with increasing
TCO and TN values at high pressure, resulting in a monoclinic
distortion of the crystal structure,21 and a similar tendency
seems to be realized in Nd0.5Ca0.5MnO3 as well.22 Unlike
half-doped systems, the high pressure effects on manganites
with more complex AFM states realized for x�2 /3 remain
unexplored. In the present study of the crystal and magnetic
structures of the La0.33Ca0.67MnO3 compound with the larg-
est TCO for the La1−xCaxMnO3 family, we demonstrate that
the WC AFM state in this case is remarkably unstable to the
application of a high external pressure and is completely de-
stroyed in favor of the C-type AFM state, which is a ground
state for manganites with larger radii �rA�.

II. EXPERIMENTAL DETAILS

The La0.33Ca0.67MnO3 sample was synthesized by a stan-
dard solid state reaction method. The initial reagents were
La2O3, CaCO3, and MnO2. La2O3 was preliminarily an-
nealed at 1200 °C for 2 h, CaCO3 at 500 °C for 3 h, and
MnO2 at 750 °C for 24 h. The latter process involved the
transition from MnO2 to Mn2O3. A mixture of the oxides was
taken in the necessary stoichiometric proportion and thor-
oughly ground in ethanol. The mixture was annealed in four
steps, with intermediate grinding in ethanol every 20 h: the
first stage was annealing at 850 °C for 20 h, the second stage
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at 950 °C for 20 h, the third stage at 1100 °C for 100 h, and
the fourth stage at 1200 °C for 200 h. Then, the sample was
quenched in cooling to room temperature. The x-ray diffrac-
tion �XRD� measurements at ambient conditions showed that
the sample has a single orthorhombic phase of Pnma sym-
metry.

XRD measurements at high pressures up to 50 GPa were
conducted at ambient temperature in four-pin-type diamond
anvil cells.23 The Re gasket and LiF admixed to a sample as
a pressure transmitting medium were used. The XRD spectra
were measured by using a high-brilliance FRD rotating an-
ode generator �Mo K� radiation, �=0.7115 Å�, FluxMax fo-
cusing optics, and a Bruker APEX charge coupled device
area detector. The two-dimensional XRD images were con-
verted to conventional one-dimensional diffraction patterns
by using the FIT2D program.24 The data analysis was per-
formed by using the GSAS program.25

Neutron diffraction measurements were performed at the
DN-12 spectrometer by using sapphire anvil cells26 in the
10–300 K temperature range at high pressures of up to
5 GPa. Diffraction patterns were collected at scattering
angles of 45.5° and 90° with the resolution �d /d=0.022 and
0.015, respectively. Experimental data were analyzed by the
Rietveld method using the MRIA program27 or FULLPROF

�Ref. 28� if magnetic structure was to be included.

III. RESULTS AND DISCUSSION

At ambient conditions, La0.33Ca0.67MnO3 has an orthor-
hombically distorted perovskite crystal structure �space
group Pnma� with lattice parameters related to those of the
ideal cubic subcell as a�c�ap

�2 and b�2ap.10,11 Due to
the pseudocubic character of the lattice, x-ray diffraction pat-
terns at ambient conditions have rather symmetric peaks
�Fig. 1�. With a pressure increase, the diffraction peak
formed by �202� and �040� reflections and located at 2�
=21.5° splits into two peaks, indicating a noticeably larger
compressibility of the b lattice parameter in comparison with

those of a and c �Fig. 2�. The compression anisotropy can be
characterized by “orthorhombic” strains Os� =2�c−a� / �c
+a� in the �ac� plane and Os�=2�a+c−b�2� / �a+c+b�2�
along the b axis.29 The Os� increases nearly linearly under
pressure, while Os� grows more rapidly and exhibits a slope
change at P�20 GPa �Fig. 2�. The qualitatively similar be-
havior of orthorhombic strains was also observed in
La0.5Ca0.5MnO3 with the CE-type AFM ground state, al-
though a slope change of Os� was found at a considerably
smaller pressure P=5 GPa.21 The unit cell volume versus
pressure dependence does not show any signatures �Fig. 2�.
The volume compressibility data of La0.33Ca0.67MnO3 �Fig.
2� were fitted by the Birch–Murnaghan equation of state.30

The value B0=235�5� GPa calculated with the fixed B�
=4.0 and V0=216.5 Å3 is somewhat larger than B0
=186 GPa obtained for La0.5Ca0.5MnO3 �Ref. 21� and
178 GPa for La0.75Ca0.25MnO3 �Ref. 29�. No evidence of a
monoclinic lattice distortion was found in the studied pres-
sure range of 0–50 GPa at ambient temperature, unlike in
the La0.5Ca0.5MnO3 case.21

Neutron diffraction patterns of La0.33Ca0.67MnO3 mea-
sured at selected pressures and temperatures are shown in
Fig. 3. The structural parameters obtained at ambient condi-
tions �Table I� are close to those from Refs. 10 and 11. At
ambient pressure below TN-WC=140 K, the appearance of
magnetic lines �2 /3 1 1 /2� at 4.94 Å and �1 /3 1 1 /2� at
5.74 Å was observed, indicating an onset of the WC AFM
state with a propagation vector kWC= �1 /3 0 1 /2�.10,11 The
magnetic supercell of this AFM structure is tripled along a
and doubled along c crystallographic axes �3a�b�2c�,
with its complex magnetic arrangement and relevant d�3x2

−r2� /d�3z2−r2�eg orbital order of Mn3+ sublattice10 shown in
Fig. 4. In addition, the appearance of a magnetic peak
�1 /2 1 1 /2� characteristic of the C-type AFM state11 with a
propagation vector kC= �1 /2 0 1 /2� was detected below
TN-C=155 K. The magnetic supercell of this AFM structure
is doubled along the a and c crystallographic axes �2a�b
�2c�, with its magnetic arrangement and characteristic
d�3z2−r2�eg orbital order also shown in Fig. 4. A coexistence
of WC and C-type AFM states for x�2 /3 was also previ-
ously observed at ambient pressure.10,11 One should note that
at ambient pressure, the C-type AFM state is a ground state
of the La1−xCaxMnO3 system for x�0.85, and its onset is

FIG. 1. X-ray diffraction patterns of La0.33Ca0.67MnO3 mea-
sured at selected pressures and ambient temperature and processed
by the Rietveld method. Experimental points and calculated profiles
are shown.

FIG. 2. Lattice parameters and unit cell volume �left� and ortho-
rhombic strains �right� in La0.33Ca0.67MnO3 as functions of
pressure.
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accompanied by a subtle monoclinic lattice distortion �angle
	�91°�.11,31 At low temperature, due to a limited resolution
of the diffractometer used, it was difficult to resolve the
monoclinic distortion of the C-type AFM phase and full
structural parameters sets in coexisting AFM phases. The
lattice parameters of WC and C-type AFM phases were
found to have close values: a�5.410�3� Å, b�7.526�5� Å,
c�5.417�3� Å at T=10 K. The observed noticeable shrink-
age of the b lattice parameter and some elongation of a and
c lattice parameters at low temperature for WC and C-type
AFM phases in comparison with those for the paramagnetic
phase at ambient temperature �Table I� is in agreement with
previous studies of the La1−xCaxMnO3 system.10,11,31 The
magnetic structure refinements for the C-type AFM state
were performed with orthogonal crystallographic axes corre-
sponding to 	=90°. The values of ordered Mn magnetic mo-
ments in WC and C-type AFM states �averaged for Mn3+ and
Mn4+ sublattices for the WC AFM state, which have close
magnetic moment values� at T=10 K are 
WC�
C=1.1�1�

B, implying that their volume fractions are almost the same.
It is reasonable to assume that coexisting WC and C-type
AFM states form domains of nanoscopic size, as found for
La1−xCaxMnO3 �x=0.67–0.77�.32,33

At P�2 GPa, on cooling, the intensity of the strongest
magnetic lines �2 /3 1 1 /2� and �1 /3 1 1 /2� from the WC
AFM state was fully suppressed, while the intensity of the
�1 /2 1 1 /2� magnetic line from the C-type AFM state in-
creases noticeably �Fig. 3�. This corresponds to the total sup-
pression of the WC AFM state in favor of the C-type AFM
one. The value of the ordered magnetic moment at T=10 K
is about the same, 
C�2.2�1� 
B, over 2–5 GPa pressure
range. The TN-C value significantly increases from
155 to 235 K in the 0–2 GPa pressure range �Fig. 5�. No
further changes in diffraction patterns were found at high
pressures up to 5 GPa, indicating the stability of the C-type
AFM state. The structural parameters of La0.33Ca0.67MnO3
obtained from a Rietveld refinement of diffraction data at
selected pressures and T=10 K, using a monoclinic struc-
tural model of P21 /m symmetry,11,31 are listed in Table I.

In the orthorhombic paramagnetic phase of
La0.33Ca0.67MnO3 �Table I�, the MnO6 octahedra consist of a
pair of apical Mn-O1a bond lengths oriented along the b axis
and two pairs of inequivalent planar Mn-O1p bond lengths
lying in �ac� planes, having rather close values lMn-O1a
=1.923�5� Å and lMn-O1p�1,2��1.930�5� Å at ambient condi-
tions. The compression of MnO6 octahedra at ambient tem-

TABLE I. Structural parameters of La0.33Ca0.67MnO3 at selected pressures and temperatures obtained
from neutron diffraction experiment. In the orthorhombic phase of Pnma symmetry, the atomic positions are
La /Ca1 and O1a−4�b� �x, 0.25, z�, Mn1−4�a� �0.5, 0, 0�, and O1p−8�d� �x, y, z�. In the monoclinic space
group of P21 /m symmetry, the atomic positions are: La /Ca1,2 and O1,2a−2�e� �x, 0.25, z�, Mn1−2�b� �0.5,
0, 0�, Mn2−2�c� �0, 0, 0.5� and O1,2p−4�f� �x, y, z�.

P �GPa� 0 2.3 5.0

T �K� 290 290 10 290 10

Space group Pnma Pnma P21 /m Pnma P21 /m

a �Å� 5.376�3� 5.364�4� 5.371�4� 5.350�4� 5.337�5�
b �Å� 7.584�5� 7.542�6� 7.416�6� 7.492�6� 7.370�7�
c �Å� 5.385�5� 5.374�5� 5.383�5� 5.362�6� 5.368�5�
	 �deg� 92.1�2� 92.8�2�

La /Ca1 x 0.024�1� 0.024�2� 0.053�2� 0.054�3� 0.042�2�
z 0.007�2� −0.011�3� 0.004�3� −0.014�4� 0.019�3�

La /Ca2 x 0.514�2� 0.492�2�
z 0.482�3� 0.479�3�

O1a x 0.495�2� 0.480�5� 0.463�5� 0.475�5� 0.483�5�
z 0.059�2� 0.034�5� 0.054�5� 0.043�5� 0.049�5�

O2a x 0.964�5� 0.970�5�
z 0.448�5� 0.463�5�

O1p x 0.281�3� 0.273�5� 0.276�5� 0.269�5� 0.268�5�
y 0.030�1� 0.038�3� 0.033�4� 0.033�3� 0.035�4�
z 0.719�3� 0.727�5� 0.724�5� 0.731�5� 0.732�5�

O2p x 0.768�5� 0.772�5�
y 0.030�4� 0.020�4�
z 0.768�5� 0.772�5�

Rp �%� 5.92 6.95 9.75 7.84 8.59

Rwp �%� 4.45 6.25 7.55 8.51 6.57
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perature is anisotropic with the most compressible Mn-O1a
bond �Fig. 5�. Its linear compressibility kMn-Oi=
−	1 / �lMn-Oi�P=0
�dlMn-Oi /dP�T is kMn-O1a=0.004 GPa−1,
while the corresponding value for the average of Mn-O1p
bonds is about twice smaller, k�Mn-O1p�=0.002 GPa−1. The
average �Mn-O-Mn� bond angle increases from 160.5° to
164.8° in the 0–5 GPa pressure range.

The onset of the C-type AFM state is accompanied by a
monoclinic lattice distortion, leading to a cooperative apical
elongation of manganese octahedra along �1 0 1� directions
due to d�3z2−r2�eg orbital ordering �Fig. 4�. In the mono-
clinic low temperature phase of La0.33Ca0.67MnO3 �Table I�,
there are two different types of manganese octahedra
Mn�1,2�O6, consisting of the pair of apical
Mn�1,2�-O�1,2�a and two pairs of planar Mn�1,2�-O�1,2�p
bond lengths, respectively. At P=2.3 GPa and T=10 K, the
apical Mn1-O1a, Mn2-O2a and planar Mn1-O1p, Mn2-O1p
distances have rather close values lMn1-O1a� lMn-O2a
�1.886�6� and lMn1-O1p� lMn2-O1p�1.893�6� Å, while the
remaining planar Mn1-O2p and Mn2-O2p distances are no-
ticeably longer, lMn1-O2p� lMn2-O2p�1.952�7� Å. At high
pressures and T=10 K, the compressibility of shorter Mn�1,2�-O�1,2�a and Mn�1,2�-O1p bond lengths is about

the same, kMn�1,2�-O�1,2�a�kMn�1,2�-O1p�0.0047 GPa−1, while
that for the longer Mn�1,2�-O2p bond lengths is consider-
ably smaller, kMn�1,2�-O2p�0.0008 GPa−1. This implies a fur-
ther elongation of manganese octahedra at high pressure in
the monoclinic low temperature phase.

In the limit of small pressures, the Clausius–Clapeyron
equation dTt /dP=�S /�V, where �S and �V are the entropy
and volume changes at transition temperature Tt, predicts a
positive pressure coefficient for the charge ordering tempera-
ture dTCO /dP�2.5 K /GPa, calculated using unit cell
volume10 and specific heat data34 at ambient pressure and,
therefore, a stability of the AFM WC state. The relevant
compound La0.5Ca0.5MnO3, indeed, follows such a predic-
tion and the CE-type AFM state remains stable at high pres-
sures of up to at least 6.2 GPa with dTCO /dP�dTN /dP
�4 K /GPa.21 In contrast, the WC AFM state of
La0.33Ca0.67MnO3 is rapidly suppressed at high pressures.

FIG. 3. �Color online� Neutron diffraction patterns of
La0.33Ca0.67MnO3 measured at different pressures and temperatures
and processed by the Rietveld method. Ticks below represent cal-
culated positions of nuclear peaks. Most intense magnetic peaks
from WC and C-type AFM structures are marked as kC and kWC,
respectively. The background peak from a high pressure cell is
marked as “b.”

FIG. 4. �Color online� Schematic representation of Mn magnetic
moment arrangement and eg orbital order in Wigner-crystal AFM
structure with a propagation vector kWC= �1 /3 0 1 /2� and C-type
AFM structure with a propagation vector kC= �1 /2 0 1 /2�. “�” and
“�” correspond to FM and AFM couplings between neighboring
Mn magnetic moments, which are located in �ac� planes and AFM
coupled along the b axis. The conventional and frustrated
Mn4+-O2−-Mn4+ superexchange interactions in WC AFM phase are
shown by solid and dashed lines.

FIG. 5. Left: Mn-O bond lengths in the orthorhombic phase of
La0.33Ca0.67MnO3 as functions of pressure at ambient temperature.
Right: Temperature dependences of Mn magnetic moments of WC
AFM �averaged among Mn3+ and Mn4+ sublattices� and C-type
AFM phases for P=0 and 2 GPa.
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Such a behavior can be attributed to the following reasons.
First, the application of a high pressure leads to an increase
in the eg electron transfer electron integral35 t
�cos�1 /2	
-�Mn-O-Mn�
� / l�Mn-O�

3.5 in the Mn3+-O2−-Mn4+

network and an enhanced delocalization of eg electrons par-
ticipating in the conduction process. While in the WC AFM
state, due to a peculiar orbital order �Fig. 4�, the eg electron
transfer is possible along quasi-one-dimensional zigzag
Mn3+-O2−-Mn4+ FM chains only; in the C-type AFM state,
such a transfer is realized along �101� ferromagnetic linear
chains �Fig. 4�, resulting in a higher kinetic energy gain36

and making the C-type AFM state more energetically prefer-
able at high pressures. Second, in the framework of a charge
ordered model of the WC AFM structure of
La0.33Ca0.67MnO3, there exists a number of frustrated mag-
netic Mn4+-O2−-Mn4+ interactions �Fig. 4�, which have AFM
coupling along the b axis and either AFM or FM coupling in
�ac� planes, and such a frustration presumably induces some
spin canting.10 Such interactions should naturally be AFM in
accordance with Goodenough–Kanamori rules, as is ob-
served in most of the oxides containing Mn4+ ions and pre-
dicted by theoretical considerations.37 The increase in super-
exchange interaction strength38 JAF� t4 at high pressure is
expected to remove the frustration of Mn4+-O2−-Mn4+ inter-
actions and result in the instability of the WC AFM structure.
These considerations are consistent with a recent theoretical
study,39 which showed that the AFM phase with a zigzag
chain topology of orbital and magnetic order in manganites
is realized for the x�2 /3 concentration only in a narrow
range of JAF / t values and it is unstable with respect to the

C-type AFM phase for a decrease in � / t value �the parameter
� characterizes the electron-phonon coupling strength�.

One should note that high pressure effects in
La0.33Ca0.67MnO3 are qualitatively similar to chemical com-
position effects related to an increase in �rA� in
R0.33A0.67MnO3. In the latter case, also a decrease in average
bond length l�Mn-O�, an increase in average bond angle �Mn-
O-Mn� values, and a change in ground state from WC AFM
observed in La0.33Ca0.67MnO3 �a similar state is also found in
Pr0.33Ca0.67MnO3� to a C-type AFM one �observed in
Nd0.33Sr0.67MnO3, Pr0.33Sr0.67MnO3, and La0.33Sr0.67MnO3�
occur.3–5,10,12

IV. CONCLUSIONS

Our results demonstrate that the WC AFM state in
La0.33Ca0.67MnO3 is remarkably unstable at high pressures
and is rapidly suppressed in favor of the C-type AFM state.
Such a behavior is in sharp contrast to the stability of the WC
AFM state in high magnetic fields of up to 14 T as well as
the stability of the relevant CE-type AFM state in
La0.5Ca0.5MnO3 for a comparable pressure range. It can be
related to enhanced eg electron delocalization and superex-
change interaction strength at high pressures.
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