Pressure-induced suppression of Wigner-crystal antiferromagnetic state in La_{0.33}Ca_{0.67}MnO₃

D. P. Kozlenko,¹ L. S. Dubrovinsky,² B. N. Savenko,¹ V. I. Voronin,³ E. A. Kiselev,³ and N. V. Proskurnina³

1 *Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Russia*

²*Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth D-95440, Germany*

3 *Institute for Metal Physics, Ural Division of RAS, 620219 Yekaterinburg, Russia*

(Received 29 October 2007; revised manuscript received 4 March 2008; published 31 March 2008)

The crystal and magnetic structures of $La_{0.33}Ca_{0.67}MnO_3$ were studied at high pressures up to 50 and 5 GPa, respectively. The lattice contraction is highly anisotropic with the most compressible *b* axis. A rapid suppression of the "Wigner-crystal" antiferromagnetic (AFM) state and stabilization of the *C*-type AFM state under high pressure were observed. Possible reasons for the instability of the Wigner-crystal AFM state under pressure are discussed.

DOI: [10.1103/PhysRevB.77.104444](http://dx.doi.org/10.1103/PhysRevB.77.104444)

PACS number(s): $71.30.+h, 61.50.Ks, 75.25.+z$

I. INTRODUCTION

Perovskite manganites $R_{1-x}A_xMnO_3$ (*R*, rare earth; *A*, alkali earth elements) are at the current focus of extensive scientific research due to a rich variety of fascinating physical phenomena—colossal magnetoresistance, insulator-metal transition, charge and orbital ordering, and mesoscopic phase separation.^{1,[2](#page-4-1)} A complicated balance of ferromagnetic (FM) double exchange mediated by charge carriers of *eg* nature and antiferromagnetic (AFM) superexchange interactions between localized magnetic moments of t_{2g} nature coupled to lattice distortion effects and orbital degrees of freedom leads to an especially complex phase diagram of compounds with $x > 0.5$.

Manganites R_{1-x} Sr_{*x*}MnO₃ (R=La, Pr, and Nd) with a larger average A-site ionic radius $\langle r_A \rangle$ exhibit AFM states of *A* type for $x \sim 0.5-0.6$ and *C* type for $x \sim 0.6-0.85$ concentration range[.3](#page-4-2)[–5](#page-4-3) In the *A*-type AFM state, Mn magnetic moments form FM planes with AFM coupling between them, while in the *C*-type AFM state, they form linear FM chains with AFM interchain coupling.^{3[–5](#page-4-3)} In compounds $R_{1-x}Ca_xMnO_3$ (*R*=La, Pr, and Nd) with a smaller $\langle r_A \rangle$, charge localization effects become more pronounced and, for *x* values corresponding to ideal ratios of Mn^{3+} and Mn^{4+} ions—1:1, 2:3, etc., a number of more complicated AFM ground states occur, e.g., CE-type AFM $(x=0.5)$ and "Wigner-crystal" (WC, $x=0.67$) AFM ones.^{6–[13](#page-4-5)} The characteristic feature of these states is the presence of two structurally and magnetically inequivalent sublattices, corresponding either to different propagation vectors $k_{\text{C}} = (1/2 \ 0 \ 1/2)$ and k_{E} = (0 0 1/2) for the CE-type AFM state or the same propagation vector $k_{\text{WC}} = (1/3 \ 0 \ 1/2)$ for the WC AFM state. One of these sublattices exhibits a cooperative Jahn–Teller distortion of MnO₆ octahedra associated with the $d(3x^2)$ $-r^2$) $d(3z^2 - r^2)$ e_g orbital order, while another one has a more regular $Mn\ddot{O}_6$ octahedra.^{6–[13](#page-4-5)} In both the CE-type and WC AFM states, Mn magnetic moments form quasi-onedimensional zigzag FM chains with AFM interchain cou-pling with a somewhat different chain topology.^{8[,10,](#page-4-7)[14](#page-4-8)} Traditionally, the formation and properties of CE-type and WC AFM states have been interpreted in terms of the long range Mn^{3+}/Mn^{4+} charge ordering concept, ^{6[–13](#page-4-5)} although some recent results imply that the real valence modulation between inequivalent Mn sites is much smaller than $(3.5 \pm 0.5)e^{(15-19)}$ $(3.5 \pm 0.5)e^{(15-19)}$ $(3.5 \pm 0.5)e^{(15-19)}$

The temperature T_{CO} corresponding to the onset of the lattice distortions associated with charge ordering rapidly grows from 155 to 260 K with increasing Ca content (and Mn⁴⁺ ion concentration) in the $x=0.5-0.67$ range for the $La_{1-x}Ca_xMnO_3$ system and it starts to decrease for larger *x* values, while the Néel temperature weakly decreases, T_N \sim 155–140 K.^{8[–11](#page-4-11)} The WC AFM state of La_{1−*x*}Ca_{*x*}MnO₃ with $x \sim 2/3$ remains stable in high magnetic fields *H* of up to 14 T, while the CE-type AFM state for $x \sim 1/2$ is gradually suppressed at $H \sim 6$ T.^{[20](#page-4-12)}

A study of high pressure effects on the La1−*x*Ca*x*MnO3 system can provide an important insight into the formation of ground states of manganites with an enhanced charge localization and their stability with respect to a variation of interatomic distances and angles, controlling the balance of competing interactions. Recently, it was found that the CE-type AFM state remains stable in $La_{0.5}Ca_{0.5}MnO₃$ with increasing $T_{\rm CO}$ and $T_{\rm N}$ values at high pressure, resulting in a monoclinic distortion of the crystal structure, 21 and a similar tendency seems to be realized in $Nd_{0.5}Ca_{0.5}MnO_3$ as well.²² Unlike half-doped systems, the high pressure effects on manganites with more complex AFM states realized for $x \sim 2/3$ remain unexplored. In the present study of the crystal and magnetic structures of the $La_{0.33}Ca_{0.67}MnO₃$ compound with the largest T_{CO} for the La_{1−*x*}Ca_{*x*}MnO₃ family, we demonstrate that the WC AFM state in this case is remarkably unstable to the application of a high external pressure and is completely destroyed in favor of the *C*-type AFM state, which is a ground state for manganites with larger radii $\langle r_A \rangle$.

II. EXPERIMENTAL DETAILS

The La_{0.33}Ca_{0.67}MnO₃ sample was synthesized by a standard solid state reaction method. The initial reagents were La_2O_3 , CaCO₃, and MnO₂. La_2O_3 was preliminarily annealed at 1200 °C for 2 h, CaCO₃ at 500 °C for 3 h, and $MnO₂$ at 750 °C for 24 h. The latter process involved the transition from MnO_2 to Mn_2O_3 . A mixture of the oxides was taken in the necessary stoichiometric proportion and thoroughly ground in ethanol. The mixture was annealed in four steps, with intermediate grinding in ethanol every 20 h: the first stage was annealing at 850 °C for 20 h, the second stage

FIG. 1. X-ray diffraction patterns of $La_{0.33}Ca_{0.67}MnO₃$ measured at selected pressures and ambient temperature and processed by the Rietveld method. Experimental points and calculated profiles are shown.

at 950 °C for 20 h, the third stage at 1100 °C for 100 h, and the fourth stage at $1200\degree C$ for 200 h. Then, the sample was quenched in cooling to room temperature. The x-ray diffraction (XRD) measurements at ambient conditions showed that the sample has a single orthorhombic phase of *Pnma* symmetry.

XRD measurements at high pressures up to 50 GPa were conducted at ambient temperature in four-pin-type diamond anvil cells.²³ The Re gasket and LiF admixed to a sample as a pressure transmitting medium were used. The XRD spectra were measured by using a high-brilliance FRD rotating anode generator (Mo $K\alpha$ radiation, $\lambda = 0.7115 \text{ Å}$), FluxMax focusing optics, and a Bruker APEX charge coupled device area detector. The two-dimensional XRD images were converted to conventional one-dimensional diffraction patterns by using the FIT2D program. 24 The data analysis was performed by using the GSAS program. 25

Neutron diffraction measurements were performed at the DN-12 spectrometer by using sapphire anvil cells²⁶ in the 10–300 K temperature range at high pressures of up to 5 GPa. Diffraction patterns were collected at scattering angles of 45.5° and 90° with the resolution $\Delta d/d = 0.022$ and 0.015, respectively. Experimental data were analyzed by the Rietveld method using the MRIA program 27 or FULLPROF (Ref. [28](#page-5-2)) if magnetic structure was to be included.

III. RESULTS AND DISCUSSION

At ambient conditions, $La_{0.33}Ca_{0.67}MnO₃$ has an orthorhombically distorted perovskite crystal structure (space group *Pnma*) with lattice parameters related to those of the ideal cubic subcell as $a \approx c \approx a_p \sqrt{2}$ and $b \approx 2a_p$.^{[10,](#page-4-7)[11](#page-4-11)} Due to the pseudocubic character of the lattice, x-ray diffraction patterns at ambient conditions have rather symmetric peaks (Fig. [1](#page-1-0)). With a pressure increase, the diffraction peak formed by (202) and (040) reflections and located at 2θ $=$ 21.5 \degree splits into two peaks, indicating a noticeably larger compressibility of the *b* lattice parameter in comparison with

FIG. 2. Lattice parameters and unit cell volume (left) and orthorhombic strains (right) in $La_{0.33}Ca_{0.67}MnO_3$ as functions of pressure.

those of a and c (Fig. [2](#page-1-1)). The compression anisotropy can be characterized by "orthorhombic" strains $Q_s = 2(c-a)/(c$ $+ a$) in the *(ac*) plane and $Os_{\perp} = 2(a+c-b\sqrt{2})/(a+c+b\sqrt{2})$ along the *b* axis.²⁹ The Os_{\parallel} increases nearly linearly under pressure, while Os_1 grows more rapidly and exhibits a slope change at $P \sim 20$ $P \sim 20$ $P \sim 20$ GPa (Fig. 2). The qualitatively similar behavior of orthorhombic strains was also observed in $La_{0.5}Ca_{0.5}MnO₃$ with the CE-type AFM ground state, although a slope change of Os_{\perp} was found at a considerably smaller pressure $P=5$ GPa.²¹ The unit cell volume versus pressure dependence does not show any signatures (Fig. [2](#page-1-1)). The volume compressibility data of $La_{0.33}Ca_{0.67}MnO_3$ (Fig. [2](#page-1-1)) were fitted by the Birch–Murnaghan equation of state.³⁰ The value $B_0 = 235(5)$ GPa calculated with the fixed *B'* $=4.0$ and $V_0=216.5 \text{ Å}^3$ is somewhat larger than B_0 $=186$ GPa obtained for $La_{0.5}Ca_{0.5}MnO₃$ (Ref. [21](#page-4-13)) and 178 GPa for $La_{0.75}Ca_{0.25}MnO_3$ (Ref. [29](#page-5-3)). No evidence of a monoclinic lattice distortion was found in the studied pressure range of 0–50 GPa at ambient temperature, unlike in the $La_{0.5}Ca_{0.5}MnO₃ case.²¹$

Neutron diffraction patterns of $La_{0.33}Ca_{0.67}MnO₃$ measured at selected pressures and temperatures are shown in Fig. [3.](#page-3-0) The structural parameters obtained at ambient condi-tions (Table [I](#page-2-0)) are close to those from Refs. [10](#page-4-7) and [11.](#page-4-11) At ambient pressure below $T_{N-WC}=140$ K, the appearance of magnetic lines $(2/3 \ 1 \ 1/2)$ at 4.94 Å and $(1/3 \ 1 \ 1/2)$ at 5.74 Å was observed, indicating an onset of the WC AFM state with a propagation vector $k_{\text{WC}} = (1/3 \ 0 \ 1/2)$.^{[10](#page-4-7)[,11](#page-4-11)} The magnetic supercell of this AFM structure is tripled along *a* and doubled along *c* crystallographic axes $(3a \times b \times 2c)$, with its complex magnetic arrangement and relevant $d(3x^2)$ $-r^2$) / $d(3z^2 - r^2)e_g$ orbital order of Mn³⁺ sublattice¹⁰ shown in Fig. [4.](#page-3-1) In addition, the appearance of a magnetic peak $(1/2 1 1/2)$ characteristic of the *C*-type AFM state^{[11](#page-4-11)} with a propagation vector $k_C = (1/2 \ 0 \ 1/2)$ was detected below $T_{N-C}=155$ K. The magnetic supercell of this AFM structure is doubled along the *a* and *c* crystallographic axes $(2a \times b$ \times 2*c*), with its magnetic arrangement and characteristic $d(3z^2 - r^2)e_g$ orbital order also shown in Fig. [4.](#page-3-1) A coexistence of WC and *C*-type AFM states for $x \sim 2/3$ was also previ-ously observed at ambient pressure.^{10[,11](#page-4-11)} One should note that at ambient pressure, the *C*-type AFM state is a ground state of the La_{1−*x*}Ca_{*x*}MnO₃ system for $x \sim 0.85$, and its onset is

TABLE I. Structural parameters of $La_{0.33}Ca_{0.67}MnO_3$ at selected pressures and temperatures obtained from neutron diffraction experiment. In the orthorhombic phase of *Pnma* symmetry, the atomic positions are La/Ca1 and O1_a−4(b) (x, 0.25, z), Mn1−4(a) (0.5, 0, 0), and O1_p−8(d) (x, y, z). In the monoclinic space group of $P2_1/m$ symmetry, the atomic positions are: La/Ca1,2 and O1,2_{*a*}−2(e)</sub> (*x*, 0.25, *z*), Mn1−2(b) (0.5, 0, 0), Mn2−2(c) (0, 0, 0.5) and O1, 2_p −4(f) (*x*, *y*, *z*).

accompanied by a subtle monoclinic lattice distortion (angle $\beta \approx 91^{\circ}$). ^{[11](#page-4-11)[,31](#page-5-5)} At low temperature, due to a limited resolution of the diffractometer used, it was difficult to resolve the monoclinic distortion of the *C*-type AFM phase and full structural parameters sets in coexisting AFM phases. The lattice parameters of WC and *C*-type AFM phases were found to have close values: $a \approx 5.410(3)$ Å, $b \approx 7.526(5)$ Å, $c \approx 5.417(3)$ Å at $T=10$ K. The observed noticeable shrinkage of the *b* lattice parameter and some elongation of *a* and *c* lattice parameters at low temperature for WC and *C*-type AFM phases in comparison with those for the paramagnetic phase at ambient temperature (Table I) is in agreement with previous studies of the La_{1−*x*}Ca_{*x*}MnO₃ system.^{10,[11,](#page-4-11)[31](#page-5-5)} The magnetic structure refinements for the *C*-type AFM state were performed with orthogonal crystallographic axes corresponding to $\beta = 90^\circ$. The values of ordered Mn magnetic moments in WC and *C*-type AFM states (averaged for Mn³⁺ and Mn^{4+} sublattices for the WC AFM state, which have close magnetic moment values) at $T=10$ K are $\mu_{\text{WC}} \approx \mu_{\text{C}} = 1.1(1)$ μ_B , implying that their volume fractions are almost the same. It is reasonable to assume that coexisting WC and *C*-type AFM states form domains of nanoscopic size, as found for La_{1-x}Ca_xMnO₃ (x=0.67–0.77).^{[32](#page-5-6)[,33](#page-5-7)}

At $P \geq 2$ GPa, on cooling, the intensity of the strongest magnetic lines $(2/3 1 1/2)$ and $(1/3 1 1/2)$ from the WC AFM state was fully suppressed, while the intensity of the $(1/2 1 1/2)$ magnetic line from the *C*-type AFM state in-creases noticeably (Fig. [3](#page-3-0)). This corresponds to the total suppression of the WC AFM state in favor of the *C*-type AFM one. The value of the ordered magnetic moment at *T*=10 K is about the same, $\mu_C \approx 2.2(1)$ μ_B , over 2–5 GPa pressure range. The T_{N-C} value significantly increases from 1[5](#page-3-2)5 to 235 K in the $0-2$ GPa pressure range (Fig. 5). No further changes in diffraction patterns were found at high pressures up to 5 GPa, indicating the stability of the *C*-type AFM state. The structural parameters of $La_{0.33}Ca_{0.67}MnO₃$ obtained from a Rietveld refinement of diffraction data at selected pressures and $T=10$ K, using a monoclinic structural model of $P2_1/m$ symmetry,^{11[,31](#page-5-5)} are listed in Table [I.](#page-2-0)
In the orthorhombic paramagnetic phase of

orthorhombic $La_{0.33}Ca_{0.67}MnO_3$ (Table [I](#page-2-0)), the MnO₆ octahedra consist of a pair of apical Mn-O1*^a* bond lengths oriented along the *b* axis and two pairs of inequivalent planar Mn-O1*^p* bond lengths lying in (ac) planes, having rather close values l_{Mn-01a} $=$ 1.923(5) Å and $l_{\text{Mn-O1}p(1,2)} \approx 1.930(5)$ Å at ambient conditions. The compression of $MnO₆$ octahedra at ambient temperature is anisotropic with the most compressible Mn-O1*^a* bond (Fig. [5](#page-3-2)). Its linear compressibility k_{Mn-Oi} = $-\left[1/(l_{\text{Mn-Oi}})_{P=0}\right](dl_{\text{Mn-Oi}}/dP)_T$ is $\hat{k}_{\text{Mn-O1}a}=0.004 \text{ GPa}^{-1}$, while the corresponding value for the average of $Mn-O1_p$ bonds is about twice smaller, $k_{(Mn-O1p)}=0.002 \text{ GPa}^{-1}$. The average $\langle \text{Mn-O-Mn} \rangle$ bond angle increases from 160.5 \degree to 164.8° in the 0–5 GPa pressure range.

The onset of the *C*-type AFM state is accompanied by a monoclinic lattice distortion, leading to a cooperative apical elongation of manganese octahedra along (1 0 1) directions due to $d(3z^2 - r^2)e_g$ orbital ordering (Fig. [4](#page-3-1)). In the monoclinic low temperature phase of $La_{0.33}Ca_{0.67}MnO₃$ (Table [I](#page-2-0)), there are two different types of manganese octahedra $Mn(1,2)O_6$ consisting of the pair of apical $Mn(1,2)$ -O(1,2)_{*a*} and two pairs of planar $Mn(1,2)$ -O(1,2)_{*p*} bond lengths, respectively. At *P*=2.3 GPa and *T*=10 K, the apical Mn1-O1_{*a*}, Mn2-O2_{*a*} and planar Mn1-O1_{*p*}, Mn2-O1_{*p*} distances have rather close values $l_{\text{Mn1}_2\text{O1}a} \approx l_{\text{Mn-O2}a}$ \approx 1.886(6) and $l_{\text{Mn1-O1}p} \approx l_{\text{Mn2-O1}p} \approx$ 1.893(6) Å, while the remaining planar Mn1-O2*^p* and Mn2-O2*^p* distances are noticeably longer, $l_{\text{Mn1-O2p}} \approx l_{\text{Mn2-O2p}} \approx 1.952(7)$ Å. At high pressures and $T=10 \text{ K}$, the compressibility of shorter

FIG. 3. (Color online) Neutron diffraction patterns of $La_{0.33}Ca_{0.67}MnO₃$ measured at different pressures and temperatures and processed by the Rietveld method. Ticks below represent calculated positions of nuclear peaks. Most intense magnetic peaks from WC and *C*-type AFM structures are marked as k_C and k_{WC} , respectively. The background peak from a high pressure cell is marked as "b."

FIG. 4. (Color online) Schematic representation of Mn magnetic moment arrangement and e_o orbital order in Wigner-crystal AFM structure with a propagation vector $k_{\text{WC}} = (1/3 \ 0 \ 1/2)$ and *C*-type AFM structure with a propagation vector $k_{\text{C}} = (1/2 \ 0 \ 1/2)$. "+" and "-" correspond to FM and AFM couplings between neighboring Mn magnetic moments, which are located in *(ac)* planes and AFM coupled along the *b* axis. The conventional and frustrated Mn⁴⁺-O^{2−}-Mn⁴⁺ superexchange interactions in WC AFM phase are shown by solid and dashed lines.

 $-O(1,2)_a$ and Mn(1,2)-O1_p bond lengths is about the same, $k_{\text{Mn}(1,2)-O(1,2)a}$ ≈ $k_{\text{Mn}(1,2)-O1p}$ ≈ 0.0047 GPa⁻¹, while that for the longer $\text{Mn}(1,2)$ -O2_{*p*} bond lengths is considerably smaller, $k_{\text{Mn}(1,2)-O2p} \approx 0.0008 \text{ GPa}^{-1}$. This implies a further elongation of manganese octahedra at high pressure in the monoclinic low temperature phase.

In the limit of small pressures, the Clausius–Clapeyron equation $dT_t/dP = \Delta S/\Delta V$, where ΔS and ΔV are the entropy and volume changes at transition temperature T_t , predicts a positive pressure coefficient for the charge ordering temperature $dT_{CO}/dP \approx 2.5 \text{ K}/\text{GPa}$, calculated using unit cell volume¹⁰ and specific heat data³⁴ at ambient pressure and, therefore, a stability of the AFM WC state. The relevant compound $La_{0.5}Ca_{0.5}MnO_3$, indeed, follows such a prediction and the CE-type AFM state remains stable at high pressures of up to at least 6.2 GPa with $dT_{CO}/dP \sim dT_N/dP$ \sim 4 K/GPa.^{[21](#page-4-13)} In contrast, the WC AFM state of $La_{0.33}Ca_{0.67}MnO₃$ is rapidly suppressed at high pressures.

FIG. 5. Left: Mn-O bond lengths in the orthorhombic phase of $La_{0.33}Ca_{0.67}MnO₃$ as functions of pressure at ambient temperature. Right: Temperature dependences of Mn magnetic moments of WC AFM (averaged among Mn^{3+} and Mn^{4+} sublattices) and *C*-type AFM phases for *P*=0 and 2 GPa.

Such a behavior can be attributed to the following reasons. First, the application of a high pressure leads to an increase in the e_g electron transfer electron integral³⁵ *t* \sim cos(1/2[π -(Mn-O-Mn)])/ $l_{(Mn-O)}^{3.5}$ in the Mn³⁺-O²⁻-Mn⁴⁺ network and an enhanced delocalization of e_g electrons participating in the conduction process. While in the WC AFM state, due to a peculiar orbital order (Fig. [4](#page-3-1)), the e_g electron transfer is possible along quasi-one-dimensional zigzag Mn3+-O2−-Mn4+ FM chains only; in the *C*-type AFM state, such a transfer is realized along (101) ferromagnetic linear chains (Fig. [4](#page-3-1)), resulting in a higher kinetic energy gain³⁶ and making the *C*-type AFM state more energetically preferable at high pressures. Second, in the framework of a charge ordered model of the WC AFM structure of $La_{0.33}Ca_{0.67}MnO₃$, there exists a number of frustrated mag-netic Mn^{[4](#page-3-1)+}-O^{2–}-Mn⁴⁺ interactions (Fig. 4), which have AFM coupling along the *b* axis and either AFM or FM coupling in (ac) planes, and such a frustration presumably induces some spin canting.¹⁰ Such interactions should naturally be AFM in accordance with Goodenough–Kanamori rules, as is observed in most of the oxides containing Mn^{4+} ions and predicted by theoretical considerations.³⁷ The increase in superexchange interaction strength³⁸ $J_{AF} \sim t^4$ at high pressure is expected to remove the frustration of Mn⁴⁺-O^{2−}-Mn⁴⁺ interactions and result in the instability of the WC AFM structure. These considerations are consistent with a recent theoretical study, 39 which showed that the AFM phase with a zigzag chain topology of orbital and magnetic order in manganites is realized for the $x \sim 2/3$ concentration only in a narrow range of J_{AF}/t values and it is unstable with respect to the *C*-type AFM phase for a decrease in λ/t value (the parameter λ characterizes the electron-phonon coupling strength).

One should note that high pressure effects in $La_{0.33}Ca_{0.67}MnO₃$ are qualitatively similar to chemical composition effects related to an increase in $\langle r_A \rangle$ in $R_{0.33}A_{0.67}MnO_3$. In the latter case, also a decrease in average bond length $l_{(Mn-O)}$, an increase in average bond angle $(Mn-)$ $O-Mn$) values, and a change in ground state from WC AFM observed in $La_{0.33}Ca_{0.67}MnO_3$ (a similar state is also found in $Pr_{0.33}Ca_{0.67}MnO₃$ to a *C*-type AFM one (observed in $Nd_{0.33}Sr_{0.67}MnO_3$, $Pr_{0.33}Sr_{0.67}MnO_3$, and $La_{0.33}Sr_{0.67}MnO_3$ $\rm{occur.}$ $3-5,10,12$ $3-5,10,12$ $3-5,10,12$ $3-5,10,12$

IV. CONCLUSIONS

Our results demonstrate that the WC AFM state in $La_{0.33}Ca_{0.67}MnO_3$ is remarkably unstable at high pressures and is rapidly suppressed in favor of the *C*-type AFM state. Such a behavior is in sharp contrast to the stability of the WC AFM state in high magnetic fields of up to 14 T as well as the stability of the relevant CE-type AFM state in $La_{0.5}Ca_{0.5}MnO₃$ for a comparable pressure range. It can be related to enhanced e_g electron delocalization and superexchange interaction strength at high pressures.

ACKNOWLEDGMENTS

The financial support from BGI and RFBR, Grants Nos. 08-02-90018-Bel-a and 08-02-90427-Ukr-a, is gratefully acknowledged.

- ¹ Colossal Magnetoresistance Oxides, edited by Y. Tokura (Gordon and Breach, New York, 2000).
- $2E$. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
- 3O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, Phys. Rev. B 67, 094431 (2003).
- 4E. Pollert, Z. Jirák, J. Hejtmánek, A. Strejc, R. Kužel, and V. Hardy, J. Magn. Magn. Mater. 246, 290 (2002).
- 5R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Y. Tokura, K. Ohoyama, and M. Ohashi, Phys. Rev. B **60**, 9506 $(1999).$
- ⁶E. O. Wollan and W. C. Keller, Phys. Rev. 100, 545 (1955).
- ⁷ J. B. Goodenough, Phys. Rev. **100**, 564 (1955).
- 8P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Phys. Rev. B 55, 3015 (1997).
- 9C. H. Chen, S.-W. Cheong, and H. Y. Hwang, J. Appl. Phys. **81**, 4326 (1997).
- 10P. G. Radaelli, D. E. Cox, L. Capogna, S.-W. Cheong, and M. Marezio, Phys. Rev. B 59, 14440 (1999).
- ¹¹M. Pissas and G. Kallias, Phys. Rev. B **68**, 134414 (2003).
- ¹²Z. Jirák, C. Martin, M. Hervieu, and J. Hejtmánek, Appl. Phys. A: Mater. Sci. Process. **74**, S1755 (2002).
- 13F. Millange, S. de Brion, and G. Chouteau, Phys. Rev. B **62**, 5619 (2000).
- ¹⁴T. Hotta, Y. Takada, H. Koizumi, and E. Dagotto, Phys. Rev. Lett. 84, 2477 (2000).
- 15A. Daoud-Aladine, J. Rodriguez-Carvajal, L. Pinsard-Gaudart, M. T. Fernandez-Diaz, and A. Revcolevschi, Phys. Rev. Lett. 89, 097205 (2002).
- ¹⁶ J. Herrero-Martín, J. García, G. Subías, J. Blasco, and M. Concepcion Sánchez, Phys. Rev. B 70, 024408 (2004).
- ¹⁷M. Coey, Nature (London) **430**, 155 (2004).
- ¹⁸ J. C. Loudon, S. Cox, A. J. Williams, J. P. Attfield, P. B. Littlewood, P. A. Midgley, and N. D. Mathur, Phys. Rev. Lett. **94**, 097202 (2005).
- ¹⁹ J. C. Loudon, L. F. Kourkoutis, J. S. Ahn, C. L. Zhang, S.-W. Cheong, and D. A. Muller, Phys. Rev. Lett. 99, 237205 (2007).
- 20X. G. Li, R. K. Zheng, G. Li, H. D. Zhou, R. X. Huang, J. Q. Xie, and Z. D. Wang, Europhys. Lett. 60, 670 (2002).
- 21D. P. Kozlenko, L. S. Dubrovinsky, I. N. Goncharenko, B. N. Savenko, V. I. Voronin, E. A. Kiselev, and N. V. Proskurnina, Phys. Rev. B 75, 104408 (2007).
- 22A. Arulraj, R. E. Dinnebier, S. Carlson, M. Hanfland, and S. van Smaalen, Phys. Rev. Lett. 94, 165504 (2005).
- 23N. A. Dubrovinskaia and L. S. Dubrovinsky, Rev. Sci. Instrum. 74, 3433 (2003).
- 24A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, and D. Hausermann, High Press. Res. 14, 235 (1996).
- 25A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report No. LAUR 86-748, 1994.
- 26V. P. Glazkov and I. N. Goncharenko, High Pressure Physics and Technics 1, 56 (1991) (in Russian).
- 27V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. **25**, 447 (1992).
- ²⁸ J. Rodríguez-Carvajal, Physica B **192**, 55 (1993).
- 29C. Meneghini, D. Levy, S. Mobilio, M. Ortolani, M. Nuñez-Reguero, A. Kumar, and D. D. Sarma, Phys. Rev. B **65**, 012111 $(2001).$
- ³⁰F. J. Birch, J. Geophys. Res. 91, 4949 (1986).
- 31M. Pissas, G. Kallias, M. Hofmann, and D. M. Többens, Phys. Rev. B 65, 064413 (2002).
- 32 J. Tao and J. M. Zuo, Phys. Rev. B 69, 180404(R) (2004).
- ³³ J. Tao, D. Niebieskikwiat, M. B. Salamon, and J. M. Zuo, Phys.

Rev. Lett. 94, 147206 (2005).

- 34T. Qian, R. K. Zheng, T. Zhang, T. F. Zhou, W. B. Wu, and X. G. Li, Phys. Rev. B **72**, 024432 (2005).
- 35W. A. Harrison, *The Electronic Structure and Properties of Sol*ids (Freeman, San Francisco, CA, 1980).
- ³⁶ J. van den Brink, G. Khaliullin, and D. Khomskii, Phys. Rev. Lett. 83, 5118 (1999).
- ³⁷ J. B. Goodenough, *Magnetism and the Chemical Bond* (Interscience, New York, 1963).
- ³⁸ J.-S. Zhou and J. B. Goodenough, Phys. Rev. B **68**, 054403 $(2003).$
- ³⁹L. Brey, Phys. Rev. Lett. **92**, 127202 (2004).